This article introduces a novel approach to human activity recognition (HAR) by presenting a sensor that utilizes a real-time embedded neural network. The sensor incorporates a low-cost microcontroller and an inertial measurement unit (IMU), which is affixed to the subject’s chest to capture their movements. Through the implementation of a convolutional neural network (CNN) on the microcontroller, the sensor is capable of detecting and predicting the wearer’s activities in real-time, eliminating the need for external processing devices. The article provides a comprehensive description of the sensor and the methodology employed to achieve real-time prediction of subject behaviors. Experimental results demonstrate the accuracy and high inference performance of the proposed solution for real-time embedded activity recognition.
Loading....